Strain-rate enhancements

Given an anisotropic rheology \({\bf D}({\bf S})\), where \({\bf D}\) and \({\bf S}\) are the strain-rate and deviatoric stress tensors, respectively, the directional strain-rate enhancement factors \(E_{ij}\) are defined as the \(({\bf e}_i, {\bf e}_j)\)-components of \({\bf D}\) relative to that of the rheology in the isotropic limit (isotropic CPO):

\[ E_{ij} = \frac{ {\bf e}_i \cdot {\bf D}({\bf S}) \cdot {\bf e}_j }{ {\bf e}_i \cdot {\bf D}_{\mathrm{iso}}({\bf S}) \cdot {\bf e}_j } , \qquad(1) \]

for a stress state aligned with \(({\bf e}_i, {\bf e}_j)\):

\[ {\bf S}({\bf e}_i, {\bf e}_j) = \tau_0 \begin{cases} {\bf I} - 3{\bf e}_i \otimes {\bf e}_i \;\;\quad\quad\text{if}\quad i=j \\ {\bf e}_i \otimes {\bf e}_j + {\bf e}_j \otimes {\bf e}_i \quad\text{if}\quad i\neq j \\ \end{cases} . \]

In this way:

  • \({E_{11}}\) is the longitudinal strain-rate enhancement along \({\bf e}_{1}\) when subject to compression along \({\bf e}_{1}\)

  • \({E_{12}}\) is the \({\bf e}_{1}\)\({\bf e}_{2}\) shear strain-rate enhancement when subject to shear in the \({\bf e}_{1}\)\({\bf e}_{2}\) plane

and so on.

Hard or soft

\(E_{ij}>1\) implies the material response is softened due to fabric (compared to an isotropic CPO), whereas \(E_{ij}<1\) implies hardening.

Eigenenhancements

Eigenenhancements are defined as the enhancement factors w.r.t. the CPO symmetry axes (\({\bf m}_i\)):

\[{\bf e}_i = {\bf m}_i .\]

These are the enhancements factors needed to specify the viscous anisotropy in bulk rheologies:

Transversely isotropic Orthotropic

Grain homogenization

Calculating \(E_{ij}\) using (1) for a given CPO requires an effective rheology that takes the microstructure into account.

In the simplest case, polycrystals may be regarded as an ensemble of interactionless grains (monocrystals), subject to either a homogeneous stress field over the polycrystal scale:

\[ {\bf S}' = {\bf S} , \qquad\qquad \text{(Sachs's hypothesis)} \]

or a homogeneous stain-rate field:

\[ {\bf D}' = {\bf D} , \qquad\qquad \text{(Taylor's hypothesis)} \]

where \({\bf S}'\) and \({\bf D}'\) are the microscopic (grain-scale) stress and strain-rate tensors, respectively.

The effective rheology can then be approximated as the ensemble-averaged monocrystal rheology for either case:

\[ {\bf D}^{\mathrm{Sachs}} = \langle {\bf D}'({\bf S}') \rangle = \langle {\bf D}'({\bf S}) \rangle , \qquad\qquad \text{(Sachs homogenization)} \]
\[ \qquad {\bf D}^{\mathrm{Taylor}} = \langle {\bf S}'({\bf D}') \rangle^{-1} = \langle {\bf S}'({\bf D}) \rangle^{-1} , \qquad \text{(Taylor homogenization)} \]

where \(\langle \cdot \rangle^{-1}\) inverts the tensorial relationship.

If a linear combination of the two homogenizations is considered, equation (1) can be written as

\[ E_{ij} = (1-\alpha) \frac{{\bf e}_i \cdot {\bf D}^{\mathrm{Sachs}}({\bf S}) \cdot {\bf e}_j} {{\bf e}_i \cdot {\bf D}^{\mathrm{Sachs}}_{\mathrm{iso}}({\bf S}) \cdot {\bf e}_j } + {\alpha} \frac{ {\bf e}_i \cdot {\bf D}^{\mathrm{Taylor}}({\bf S}) \cdot {\bf e}_j } { {\bf e}_i \cdot {\bf D}^{\mathrm{Taylor}}_{\mathrm{iso}}({\bf S}) \cdot {\bf e}_j } , \]

or simply

\[ E_{ij} = (1-\alpha)E_{ij}^{\mathrm{Sachs}} + {\alpha}E_{ij}^{\mathrm{Taylor}} , \]

where \(\alpha\) is a free parameter.

Grain parameters

The grain viscous parameters used for homogenization should be understood as the effective values needed to reproduce deformation experiments on polycrystals; they are not the values derived from experiments on single crystals.

Transversely isotropic grains

Monocrystal Polycrystal

If grains are approximately transversely isotropic, the grain rheology can be modelled using the transversely isotropic power-law rheology. This requires specifying the grain eigenenhancements \(E_{mm}'\) and \(E_{mt}'\), the power-law exponent \(n'\), and the Taylor—Sachs weight \(\alpha\).

Example for glacier ice

For glacier ice, we follow the literature and rename

\[ {\bf c} = {\bf m}^\prime, \\ {\bf a} = {\bf t}^\prime. \]

The below code example shows how to calculate \(E_{ij}\) given a4 (or nlm) assuming the grain parameters proposed by Rathmann and Lilien (2021):

import numpy as np
from specfabpy import specfab as sf
lm, nlm_len = sf.init(8) 

### Synthetic unidirectional CPO (all c-axes aligned in z-direction)
m = np.array([0,0,1]) 
a4 = np.einsum('i,j,k,l', m,m,m,m) # 4-times repeated outer product of m
nlm = np.zeros((nlm_len), dtype=np.complex64)
nlm[:sf.L4len] = sf.a4_to_nlm(a4) # derive corresponding expansion coefficients

### Basis for enhancement factor calculations
(e1,e2,e3, eigvals) = sf.frame(nlm, 'e') # enhancement factors are w.r.t. a^(2) basis (i.e. eigenenhancements)
#(e1,e2,e3) = np.eye(3) # enhancement factors are w.r.t. Cartesian basis (x,y,z)

### Transversely isotropic monocrystal parameters for ice (Rathmann & Lilien, 2021)
n_grain   = 1        # power-law exponent: n=1 => linear grain rheology, nonlinear (n>1) is unsupported.
Eij_grain = (1, 1e3) # grain eigenenhancements (Ecc,Eca) for compression along c-axis (Ecc) and for shear parallel to basal plane (Eca)
alpha     = 0.0125   # Taylor--Sachs weight

### Calculate enhancement factors w.r.t. (e1,e2,e3)
Eij = sf.Eij_tranisotropic(nlm, e1,e2,e3, Eij_grain,alpha,n_grain) # Eij=(E11,E22,E33,E23,E13,E12)

Choosing grain parameters for glacier ice

The grain parameters proposed by Rathmann and Lilien (2021) assume a linear viscous (\(n'=1\)) response and promote the activation of basal glide by making that slip system soft compared to other systems: \(E_{ca}' > 1\), whereas \(E_{cc}'=1\). This reduces the problem to that of picking \(E_{ca}'\) and \(\alpha\), which Rathmann and Lilien (2021) chose such that deformation tests on unidirectional CPOs (perfect single maximum) are approximately reproduced: \(E_{mt}=10\) while \(E_{mt}/E_{pq} \sim 10^4\), where \(p,q\) denote directions at \(45^\circ\) to \({\bf m}\).

The effect of choosing alternative \(E_{ca}'\) and \(\alpha\) (left plot) on eigenenhancements for different CPO states (right plot) is here shown for combinations of \(E_{ca}'\) and \(\alpha\) that fulfill \(E_{mt}=10\) for a unidirectional CPO:

Clearly, there is a tradeoff between how shear enhanced (\(E_{mt}\)) and how hard for axial compression (\(E_{mm}\)) the model allows a unidirectional CPO to be.

Evolving CPO

The below animation shows the directional enhancement factors for a CPO evolving under uniaxial compression along \({\hat {\bf z}}\) when subject to lattice rotation. Enhancement factors are calculated w.r.t. the spherical coordinate basis vectors \(({\bf e}_1, {\bf e}_2, {\bf e}_3) = ({\hat{\bf r}},{\hat{\boldsymbol \theta}},{\hat{\boldsymbol \phi}})\).

Orthotropic grains

Monocrystal Polycrystal

If grains are approximately orthotropic, the grain rheology can be modelled using the orthotropic power-law rheology. This requires specifying the grain eigenenhancements \(E_{ij}'\), the power-law exponent \(n'\), and the Taylor—Sachs weight \(\alpha\).

Example for olivine

Not yet available.